Exergetic and Thermoeconomic Analyses of Solar Air Heating Processes Using a Parabolic Trough Collector

نویسندگان

  • Miguel Ángel Hernández-Román
  • Alejandro Manzano-Ramírez
  • Jorge Pineda-Piñón
  • Jorge Ortega-Moody
چکیده

This paper presents a theoretical and practical analysis of the application of the thermoeconomic method. A furnace for heating air is evaluated using the methodology. The furnace works with solar energy, received from a parabolic trough collector and with electricity supplied by an electric power utility. The methodology evaluates the process by the first and second law of thermodynamics as the first step then the cost analysis is applied for getting the thermoeconomic cost. For this study, the climatic conditions of the city of Queretaro (Mexico) are considered. Two periods were taken into account: from July 2006 to June 2007 and on 6 January 2011. The prototype, located at CICATA-IPN, Qro, was analyzed in two different scenarios i.e., with 100% of electricity and 100% of solar energy. The results showed that thermoeconomic costs for the heating process with electricity, inside the chamber, are less than those using solar heating. This may be ascribed to the high cost of the materials, fittings, and manufacturing of the solar equipment. Also, the influence of the mass flow, aperture area, length and diameter of the receiver of the solar prototype is a parameter for increasing the efficiency of the prototype in addition to the price of manufacturing. The optimum design parameters are: length is 3 to 5 m, mass flow rate is 0.03 kg/s, diameter of the receiver is around 10 to 30 mm and aperture area is 3 m. OPEN ACCESS Entropy 2014, 16 4613

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Investigation on the Effect of Partially Metal Foam inside the Absorber of Parabolic Trough Solar Collector

In the present work the efficiency of a solar parabolic trough has been investigated experimentality. parabolic trough solar collector constitute a proven source of thermal energy for industrial process heat and power genaration. The impact of  using the partially porous media in the absorber on the efficiency of PTC (parabolic trough collector) has been investigated. The porosity of copper foa...

متن کامل

Numerical analysis of performance of solar parabolic trough collector with Cu-Water nanofluid

In the present work the effect of Cu-Water nanofluid, as heat transfer fluid, on the performance of a parabolic solar collector was studied numerically. The temperature field, thermal efficiency, mean-outlet temperatures have been evaluated and compared for the conventional parabolic collectors and nanofluid based collectors. Further, the effect of various parameters such as fluid velocity, vol...

متن کامل

Numerical analysis of performance of solar parabolic trough collector with Cu-Water nanofluid

In the present work the effect of Cu-Water nanofluid, as heat transfer fluid, on the performance of a parabolic solar collector was studied numerically. The temperature field, thermal efficiency, mean-outlet temperatures have been evaluated and compared for the conventional parabolic collectors and nanofluid based collectors. Further, the effect of various parameters such as fluid velocity, vol...

متن کامل

Thermodynamic diagnosis of a novel solar-biomass based multi-generation system including potable water and hydrogen production

In this study, a new proposed multi-generation system as a promising integrated energy conversion system is studied, and its performance is investigated thermodynamically. The system equipped with parabolic trough collectors and biomass combustor to generate electricity, heating and cooling loads, hydrogen and potable water. A double effect absorption chiller to provide cooling demand, a proton...

متن کامل

An Experimental Study on Evacuated Tube Solar Collector using Therminol D-12 as Heat Transfer Fluid Coupled with Parabolic Trough

An evacuated tube solar collector using therminol D-12 as heat transfer fluid coupled with parabolic trough is studied in this paper. An experimental set-up was constructed to study the performance of evacuated tube collector with therminol D-12 as heat transfer fluid. The parabolic trough is coupled with evacuated tube collector for better performance. In the traditional solar collectors water...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2014